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ABSTRACT

The effects of sampling frequency on the first- and second-moment statistics of
selected ECMWTF model variables are investigated in a simulation of “perpetual July”
with a diurnal evele included and with surface and atmospheric fields saved at hourly
intervals. The shortest characteristic time scales (a2 determined by the e-folding time
of lagged autocorrelation functions) are those of ground heat fluxes and temperatures,
precipitation and run-off, convective processes, cloud properties, and atmospheric
vertical motion, while the longest time seales are exhibited by soil temperature and
moisture, surface pressure, and atmospheric specific humidity, temperature and
wind. The time scales of surface heat and momentum fluxes and of convective process-
es are substantially shorter over land than over the oceans.

An appropriate sampling frequency [or each model variable is obtained by com-
paring the estimates of first- and second-moment statistics determined at intervals
ranging from 2 to 24 hours with the “best” estimates obtained from hourly sampling.
Relatively accurate estimation of first- and second-moment climate statistics (10 per-
cent ervors in means, 20 percent errors in variances) can be achieved by sampling a
maodel variable at intervals that usually are longer than the bandwidth of its ime se-
ries, but that often are shorter than its characteristic time scale. For the surface varni-
ables, sampling at intervals that are non-integral divisors of a 24-hour day yields
relatively more accurate time-mean statistics because of a reduction in errors associ-
ated with alinzing of the diurnal cycle and higher-frequency harmonics, The superior
estimates of first-moment statistics are accompanied by inferior estimates of the vari-
ance of the daily means due to the presence of systematic biases, but these probably
can be avoided by defining a different measure of low-frequency variability. Estimates
of the intradiurnal variance of accumulated precipitation and surface run-off also are
strongly impacted by the length of the storage interval. In light of these results, some
alternative strategies for storage of the EMWF maodel variables are recommended.



1. Introduction

While studies of the effects of spatial resolution on climate model simulations
span the last two decades (e.g., Manabe et al. 1970, Wellck et al. 1971, Boer and Laz-
are 1988, Boville 1991, Kiehl and Williamson 1991), the impact of temporal resolution
has only recently received much attention (e.g., Phillips 1987, Kidson and Trenberth
1988, Thuburn 1991). Sampling frequency is an important consideration for climate
studies, since geophysical variables fluctuate over a wide range of time scales. The
sampling problem is made more difficult by the typical computer storage procedure
for general circulaton models (GCMs): while many variables are updated at every
time step, the simulation history usually is saved at much coarser intervals. In effect,
“snapshots” of the instantaneous climate state are obtained only a few times, and at
the same times each day. Such a procedure may be an unavoidable consequence of
storage constraints, but its impact on model climate statistics needs to be better un-
derstood. Moreover, sampling frequency is an especially important issue for the ma-
jority of present-day general circulation models that simulate the diurnal cycle (e.g.,
Hansen et al. 1983, Boer et al. 1984, Tokioka et al. 1984, Slingo 1985) since the cli-
mate statistics may be impacted by errors associated with the aliasing of the diurnal
cycle and higher harmonics (Thuburn 1991, Trenberth 1991). ‘

We investigate this sampling problem by analyzing selected variables from a nu-
merical experiment with the European Centre for Medium Range Weather Forecasts
(ECMWF) atmospheric model. The model and the experimental design are described
in more detail in Section 2. '

Three interrelated questions are considered:

o  What are minimum acceptable sampling frequencies for accurate estimation of
the climate statistics of different model variables?

o  What are the relationships between these sampling frequencies and the character-
istic time scales and structures of variability of the model climate?

®  How are the climate statistics of the model variables impacted by sampling at the
same times versus different times each day? |



We address the first two of these questions by comparing climate statistics de-
rived from hourly sampling with those obtained from sampling at coarser intervals
and by computing other statistical measures of time scale and variability. We inves-
tigate the third question by comparing the climate statistics determined from sam-
pling at intervals that divide evenly into a 24-hour day versus those intervals that do
not. We describe our methodology and results in Section 3 and state our conclusions
in Section 4. ~

2. Model description and experimental design

In this study we used cycle 33 of the ECMWF general circulation model (GCM),
with 19 vertical levels and spectral T42 horizontal resolution. The model’s global
primitive-equation dynamics (ECMWF Research Department 1988a) are comple-
mented by extensive parameterizations of atmospheric and surface physics. Cycle 33
differs from its model predecessor (ECMWF Research Department 1988b) in the pa-
rameterizations of radiation (Morcrette 1989), convection (Tiedtke 1989), and gravity-
wave drag (Miller et al. 1989). ,

We integrated the model for a total of 60 days with the solar declination fixed in
“perpetual July” mode, but with a diurnal cycle included. July climatological sea sur-
face temperatures and sea-ice limits were prescribed (Alexander and Mobley 1976),
but soil temperature, moisture and run-off were allowed to vary in “surface” and
“deep” layers at approximately 0.1 m and 0.4 m depths, respectively (cf. ECMWF Re-
search Department 1988b for parameterization details). The model atmosphere was
initialized from an operational ECMWF dataset for June 1, 1986. Model spin-up, as
determined from the equilibration of global-integral energetics, was achieved within
the first ten days of the simulation. We analyzed the remaining 50 days of the inte-
gration.

The simulation of July climate was motivated by a desire to investigate variables
related to convection and to land surface processes’ that are especially vigorous in
Northern summer. The perpetual mode, while less realistic than a seasonal-cycle in-
tegration, produced a quasi-stationary time series which rendered statistical analysis
of the experiment more straightforward. In a departure from the standard procedure
for the model, at every hour of the integration radiative fluxes were calculated and
accumulations of precipitation and surface run-off were reset to zero. Hourly snap-




shots of more than two dozen selected variables (ef! Table 1) were saved,
3. Methodology and results

a. Characteristic time scales of model variables
Information on the characteristic time scale of a model variable V is provided by
its lagged autocorrelation function A, calenlated at each Gaussian grid point (ij) from

Alg k) = Y IVELD —pEn] VLS t+k) - wi{i. )1/ (Na™)
]

where, t is the time history and k is the lag in 1-hour increments, N is the number of
hourly time samples, W is the time mean of variable V, and ¢* is its time variance.
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FIG. 1. Mip of e-falding time 1 (rounded to nearest hour) of the lagged auto-corralation function of sur-

face Tntent heat Mux in o perpetual July integration of the ECMWF atmospherie general circulation
model. Values less than 6 hours are unshaded, values between 6 and 20 hours are lightly shaded, and

values greater than 20 hours are darkly shaded

Forincreasing lag k> 0, Ali, j.k) decreases below its zero-lag value of unity. Often
this decrease is monotonie, but relative increases also can occur at lags related to
dominant frequencies in the time series of the variable. The field of e-folding time



1(31,j), defined as the minimum lag k such that

A(i,j k) <e ' =0.368

is a measure of characteristic time scale.

The geographical distribution T(i,j) was computed for each variable. An example
is shown for the surface latent heat flux in Figure 1. The details of this field are com-
plex, but a clear geographical contrast is apparent: except for Antarctica where there
is only a weak diurnal cycle, the e-folding times over the continents are substantially
shorter than over most of the ocean and sea-ice regions. Because the values of a num-
ber of other model variables showed a sensitivity to surface type, we calculated an
area-weighted land average Ty, in addition to the area-weighted global average Tg,
which is strongly influenced by the e-folding times over the more extensive ocean sea-
ice surfaces. The area-average e-folding times of the selected climate variables are
listed in order of T;, value in Table 1. The time scales of surface long-wave, sensible,
and latent heat fluxes and of convective mass flux, cloud cover, and precipitation are
substantially shorter over land than over the oceans and sea ice, as evidenced by the
sizeable differences in Ty, and Tg. A similar pattern is displayed by the surface wind
stresses,a result of the larger surface roughness of the continents.

TABLE 1 (following). Area-weighted land/global (L/G) averages, rounded to the nearest hour, of sam-
pling statistics of selected model variables. Statistics include area-averaged values of e-folding time 1
of the lagged autocorrelation function, maximum acceptable sampling interval S (cf. section 3h), band-
width intervals sgg and sgg (cf. section 3i), and the percentage p of the total variance that is explained
by the variance of the daily means. “Mid-tropospheric” (M-T) level is approximately 500 hPa for a sur-
face pressure of 1000 hPa. “Surface (Sfc) soil” and “Deep (Dp) soil” denote layers at depths of about
0.1m and 0.4 m, respectively. Supefscript “a” indicates that the variable is accumulated over time. Su-
perscript “1” denotes a variable whose first-moment statistics grow steadily farther from the best esti-
mate (obtained by hourly sampling) with increasing sampling interval. Superscript “2” denotes a
variable whose first-moment statistics are closer to the best estimate at sampling intervals that are
non-integral divisors (NID) of a 24-hour day than are those of neighboring sampling intervals.
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FIG. 2a. Vertical profiles of global-average e-folding times 1 (rounded to the nearest hour) of atmo-
spheric temperature, u-wind, and v-wind. The profiles include data points at model vertical levels
8,11,15, and 18 which, for a surface pressure of 1000 hPa, correspond approximately to 250, 500, 850,
and 960 hPa pressure levels, ' ‘
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FIG. 2b. As in Figure 2a, except for atmospheric vertical motion and specific humidity.



From Table 1, the shortest time scales (T;=4-12 hours) are associated with sur-
face heat fluxes, soil temperature and run-off, convective processes, cloud amount and
liquid water content, and atmospheric vertical motion. The longest time scales (T, >24
hours) are exhibited by surface pressure, atmospheric specific humidity, temperature
_ and wind, deep soil temperature, and surface and deep soil moisture. Vegetation can-
opy moisture, outgoing long-wave radiation, and surface wind stress have intermedi-
ate values of Ty, in the range 13-24 hours.

The characteristic time scales of zonal and meridional wind, vertical motion, spe-
cific humidity, and temperature are listed only at mid-tropospheric (M-T) levels in Ta-
ble 1. The vertical profiles of global-average T values of these variables are shown in
Figures 2a and 2b. The time scales of temperature and zonal wind (Figure 2a) are
longer in the free atmosphere than in the boundary layer, while e-folding times for
specific humidity and vertical motion are largest near the surface (Figure 2b). (The
time scale of the meridional wind is relatively invariant with altitude.) The tempera-
ture field probably fluctuates less at higher levels because diurnal variations in heat
fluxes are larger in the boundary layer, and the u-wind is steadier at high altitudes
where persistent jet streams dominate. In contrast, orography forces a strong steady
component in the near-surface vertical motion field. Specific humidity may follow a
pattern similar to that of vertical motion because moister air correlates with rising
motion and drier air with sinking motion.

b. First- and second-moment climate statistics

For a system as complex as a GCM, the 7T value can provide only a rough indica-
tion of an appropriate sampling interval for a model variable. It is therefore necessary
to determine more explicitly the impact of sampling frequency on the climate statis-
tics of the model. The focus in this study was on first- and second-moment statistics
of different types. That is, using all the hourly samples of the field V(i,j) of each vari-
able we calculated the “best” estimate L(i,j,s), s=1 hour, of the time mean as well as
the means i(i,j,s) corresponding to sampling intervals s=2,3,...,12, and 24 hours (by
taking every other sample to compute the time mean for interval s=2, every third
sample for interval s=3, etc.).

We also calculated the daily mean of each day d as a function of interval s from



Nd(s)
ud(i’j’s) = Z V(l,j,t'S)/Nd(S)
t

where Ny(s) is the number of samples of V(i,j) available on day d for sampling interval
s. Note that when s divides evenly into a 24-hour day, the variable is sampled at the
same times each day and the number of daily samples Ny is constaht; however, when
s is a non-integral divisor (NID) of 24 hours (i.e.,, s=5,7,9,10,0r 11 hours) V is sampled
at different times each day, and Ny varies. For example, if s = 5 hours Ny is usually
5, but every fifth day it is 4. Thus, the daily means of fields exhibiting a strong diurnal
cycle will show a spurious variation associated with this sampling bias.

In addition, we computed two types of second-moment statistics for each field--
the total variance O¢? that includes the intradiurnal fluctuations about the mean and

the variance Op? of the daily means about the 50-day mean that is defined by

ND
o2 (ij,s) = 3 iy (id,s) —H (i, 8)1°/ (Np—1)
d=1
where Np = 50 is the number of daily means in the record.

The variance Op? includes only the contributions from fluctuations of lower fre-
quency than 1 day-l, and so Op?/0q2 < 1, with the fractional value being a function of
model variable and location. For many climate studies, however, Op? is of greater in-
terest than G42.

The best estimate (from hourly samples) of the area-weighted global percentage

Pg = (cf)/oi‘)c x 100

and the land-average value py, are listed for each model variable in Table 1. It can be
seen that the model’s deep soil temperature, soil and vegetation canopy moisture, sur-
face pressure and wind stress, and atmospheric specific humidity, temperature and
wind mostly vary at lower frequencies, while there is large intradiurnal variability in
the surface heat fluxes and soil temperature, convective processes , precipitation and
run-off, and vertical motion. The variance of total cloud cover and liquid water con-
tent, and of outgoing long-wave radiation is almost evenly divided between intradiur-




nal and lower-frequency fluctuations.

As expected, shorter e-folding times T in Table 1 are mostly associated with fields
that exhibit large variability at intradiurnal frequencies (i.e., lower p values). Surface
long-wave, sensible, and latent heat fluxes and atmospheric convective processes also
show differences between land-average variance percentages py, and global averages

Pc that are similar to their Ty -Tg differences.

¢.  Statistical measures of sampling-frequency effects
In determining the impact of sampling frequency on first- and second-moment

climate statistics, we sought appropriate measures of the departures of (i,j,s),
Or%(i,j,8), and Op*(i,j,s), s=2,3,...,12, and 24 hours, from the “best” estimates Ju(i,j,1),
O1%(i,j,1), and Op?@i,j,1). While t- and F- statistics are commonly used for testing the
significance of differences in means and variances (Fisher 1925), the element of sta-
tistical independence necessary for applying these tests was absent in this study be-
cause the samples were drawn from the same population. Nevertheless, suitably
modified t- and F-statistics defined by

tp(i3s) = [(j8) R (i DI/ opGj 1)

t"D (i,j, S) = “‘j'(i’j’ S) —H(I,J, I)I/GD (i7j$ 1)

Fr(i,j.s) = on(i,j,8)/om(i,j, 1)

Fp(,j,8) = 63 (i3, 8) /65 (1,4, 1)

served as useful measures of the errors in estimating the means and variances for
sampling intervals s = 2,3,...,12, and 24 hours relative to the best estimates obtained
from hourly sampling. These differed from “standard” t- and F -statistics in that there
was no dependence on degrees of freedom and the divisors were not pooled combina-
tions of 0(i,j,1) and ©(i,j,s ); rather, these measures were defined to allow the impact
of sampling frequency on the climate statistics of different variables to be readily com-



pared. Area-weighted global averages ty, tp, Fr, and Fp were computed to assist such
a comparison.

We found that the t- and F-statistics for the model’s surface variables show a
qualitatively greater sensitivity to sampling frequency than do those of the atmo-
spheric variables. For example, the errors in estimating the time mean of surface
pressure for a sampling interval of 12 hours are indicated by the field of the ty-statis-

tic in Figure 3a.

70N 1
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FIG. 3a. Field of first-moment statistic ty of surface pressure for a sampling interval of 12 hours. Con-

tours are at 0.2 and 0.6, with values greater than 1.0 shaded.

The largest errors occur in the tropics and are of the order of the standard devi-
ation Oy (i .e., tr = 1). The pattern of the errors is that of the semi-diurnal atmospheric
tide, which is aliased into the time mean of the surface pressure field at a sampling
interval of 12 hours (Thuburn 1991, Trenberth 1991). Large aliasing errors also are
apparent in the estimates of the total variance 61° of surface presssure at a 12-hour
sampling interval, as evidenced by the field of Fy (Figure 3b). In the tropics the vari-
ance is underestimated by more than 60 percent (F;<0.4), while in some mid-latitude
regions it is overestimated by more than 30 percent (Fr>1.3).

On the other hand, the estimation errors in the climate statistics of most of the
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atmospheric variables do not become substantial until the sampling interval increas-
es to 24 hours, when the diurnal cycle is aliased into the climate statistics. Even then,
large errors are usually confined to small regions.

. T . . . . . ; T T . r
0 60t 120t 180 120w 60w

FIG. 3b. Field of second-moment statistic Fp of surface pressure for a sampling interval of 12 hours.
Underestimation of variance by 20% (Fp = 0.8) is indicated by the dashed-line contour, with Fy values
less than 0.4 lightly shaded. Overestimation of variance by 20% (F = 1.2) is indicated by the solid con-
tour, with Fp values greater than 1.3 darkly shaded.

d. Statistical measures for an idealized case

As a benchmark for the analysis that is to follow, it is instructive to consider a
train of 50 constant-amplitude sine waves, each with 24-hour period--a highly ideal-
ized representation of the local diurnal cycle of a model variable for the 50-day inte-
gration. In this special case the variance Op? is zero (because the daily means 4 are
the same), and so the relevant statistics are tp (s) and Fr (s). Because their values also
depend on the phase of the wave train, we calculated tr(s) and Fr(s) for 120 values
ofphase differing by three-degree increments, and then averaged over this ensemble.
This procedure is equivalent to calculating ty(s) and F(s) for an idealized diurnal cy-
cle on grid points spaced every 3 degrees longitude (the approximate equivalent grid
spacing of the spectral T42 model), and then averaging around the latitude circle.

The ensemble-average values ty and F are plotted as a function of sampling in-
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terval s in Figures 4a and 4b, respectively. The tp-statistic grows fairly smoothly with
sampling interval up to s=12 hours, where the errors in estimating the time mean are
still less than 1 percent of the standard deviation o (Figure 4a). However, at s=24
hours the estimation error sharply increases as a result of the aliasing of the diurnal
cycle into the time mean when sampling occurs only once per day. From Figure 4b, it
is seen that at all sampling intervals 2 < s < 12 hours, the total variance is overesti-
mated (Fp > 1), but by less than 1 percent. In this range the errors grow almost lin-
early with sampling interval. At s=24 hours, however, the variance is grossly
underestimated (Fp = 0)--another consequence of the aliasing of a constant-amplitude

diurnal cycle.
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FIG. 4a. Average tp-statistic as a function of sampling interval for an ensemble of 120 time series, each
consisting of 50 constant-amplitude sine waves with 24-hour period, but with phase differing by 3-de-
gree increments. Note the logarithmic scale on the ordinate. Also note here and in following figures the
break in the abscissa and the absence of data between s=12 hours and s=24 hours.

e. Sampling frequency and first-moment climate statistics

We found that the relationship of both ty and tp to sampling interval is qualita-
tively similar and falls into two categories for the ECMWF model variables (designat-
ed by the superscripts ‘1’ and ‘2 ¢ in Table 1). The eleven category 1 variables (Figure
5) are all atmospheric fields with area-average t-statistics that increase smoothly
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with sampling interval in a way similar to the idealized case of Figure 4a. By contrast,
the fourteen variables in the second category (Figure 6) are mostly surface fields
whose first-moment statistics are estimated more accurately by sampling at intervals
that are non-integral divisors (NID) of a 24-hour day (e.g., at s=5,7,9, 10, or 11 hours)
than at neighboring even-valued sampling intervals. However, at a given sampling
interval the t-statistics of the category 1 variables (Figure 5) are several times smaller
than those of the category 2 variables (Figure 6), implying that for the same sampling
frequency the time means of the atmospheric fields can be estimated with consider-

ably greater accuracy.

1.008 |~

1.004 —

1.0—

F-Statistic
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Sampling Interval (hours)

FIG. 4b. As in Figure 4a, except for the Fp-statistic. The optimal value Fp=1.0 is shown by the dashed

line. Note the different ordinate scale below and above 1.0.

- The error in estimating the first-moment statistics due to aliasing of the diurnal
cycleis apparent. Estimation error also increases noticeably at s=12 hours as a result
of the aliasing of the semi-diurnal cycle; Hence, if snapshots from a long simulation
can only be saved twice per day, it is preferable to store the variables at 11-hour rath-
er than 12-hour intervals. The increase in aliasing error at s=12 hours is much more
abrupt for the surface variables (Figure 6) because the semi-diurnal harmonic is a
greater part of the intradiurnal variability of these fields. It follows that the larger
errors in the time means of the surface variables at even-numbered sampling inter-

-13-



vals relative to neighboring NID intervals result from the aliasing of still higher-fre-
quency harmonics that contribute part of the intradiurnal variability of these fields.
Another perspective is that the relative decrease in estimation error at the NID inter-
vals is a result of more comprehensive sampling of the surface fields, since at these
frequencies sampling is done at different times each day.

1.000 T T T T T T T T 1 T T

T TTTT1T
[ R

0.100

T Il!llll
| JlIlIII

t-Statistic

T
1

0.010

i IIlHJl

T IT1IH‘

0.001

I I 1 1 1 ! ] ]
2 3 4 5 6 7 8 Q 10 11 12¢24

Sampling Interval (hours)

FIG. 5. Cross-variable average of area-weighted global tp-statistic (solid line) and average plus cross-

variable standard deviation (dot-dashed line) as a function of sampling interval for the category 1 (at-
mospheric) variables of Tab le 1. The optimal value of tp is zero. Note the logarithmic scale on the or-

dinate. In this and following figures at s=24 hours the cross-variable average is designated by ‘— and

the cross-variable scatter by ‘— .

. Sampling frequency and second-moment climate statistics

The aggregated F-statistic for the atmospheric fields (not shown) remains be-
tween values of 1.0 and 1.01, indicating that total variance G1? is only slightly over-
estimated at all sampling frequencies. Estimation of the total variance of the surface
fields (not shown) is accurate to within 3 percent at sampling intervals up to 12 hours,
but at s=24 hours the variance is underestimated by about 20 percent on average.

The different impact of sampling frequency on the second-moment statistics of
the atmospheric variables versus those for the surface variables is more dramatically

revealed in the global-average Fp-statistics. The error in estimating the variance Op?

-14-
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of the daily means of the atmospheric variables about their fifty-day means (Figure
7) increases linearly with sampling interval up to s=12 hours, but due to aliasing of
the diurnal éycle the average error in estimating 6p? is more than 60 percent (Fp>1.6)
at s=24 hours. The variance Op? of daily means of the surface fields shows a qualita-
tively different dependence on sampling frequency, with large estimation errors evi-
dent at the NID intervals (Figure 8a). These errors are due to systematic biases in
estimating the daily means g brought about because sampling at the NID intervals
is done at different times each day and the number of daily samples varies. Biases
therefore also result in the variance Op? of the daily means plg which increase with
NID sampling interval as the number of daily samples decreases. The largest errors
are associated with the surface short-wave fluxes because they are especially sensi-
tive to the time of day when sampling takes place, but sizeable errors remain at NID
sampling intervals =9,10, and 11 hours for the surface heat fluxes, convective mass
flux, shallow soil temperature, and surface pressure (Figure 8b).
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FIG. 6. As in Figure 5, except for the category 2 (mostly surface) variables of Table 1.

These sampling biases probably could be greatly reduced by estimating low-fre-
quency variance from means obtained over periods containing a fixed number of sam-
ples, e.g. by calculating 5-day means for a sampling interval s=5 hours, etc. Because
most of the atmospheric fields do not exhibit as much intradiurnal variability as the
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surface fields (cf. Table 1), Op? can be estimated with acceptable accuracy at the NID

sampling frequencies (Figure 7).

F-Statistic
[0)]
0
]

Sampling Interval (hours)

FIG. 7. Cross-variable average of area-weighted global F statistic (solid line) and average cross-vari-

able standard deviation (dot-dashed line) as a function of sampling interval for the category 1 (atmo-
spheric) variables of Table 1. The optimal value Fp=1.00 is also shown for comparison (dashed line).

8. Sampling frequency and accumulated quantities

Instead of saving snapshots of model variables, their values can be accumulated
at each time step and stored at intervals s’. In principle, this procedure allows first-
moment statistics to be determined “exactly” (to within numerical round-off); similar-
ly, accumulating squared values permits exact determination of second-moment sta-
tistics. In practice, however, storing accumulations instead of snapshots precludes the
possibility of accurately determining the statistics of additional derived quantities.
For example, the time series of quadratic quantities such as momentum and heat
fluxes are systematically underestimated when derived a posteriori from accumula-
tions of the state variables (Thuburn 1991). Thus, unless all the quantities of interest
can be identified a priori and computed efficiently at each time step, a strategy of sav-
ing accumulations instead of snapshots is problematical.
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FIG. 8a. As in Figure 7, except for the category 2 (mostly surface) variable s of Table 1.
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FIG 8b. As in Figure 8a, but excluding the Fp-statistics for surface upward and downward short-wave
radiative fluxes.
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For the ECMWF model, however, it is common practice to selectively store accu-
mulations of rapidly fluctuating variables such as precipitation and runoff, usually at
94-hour intervals. In this case the first-moment statistics as well as the variance of
the daily means are known exactly, but the part of the total variance Op? that is due
to intradiurnal fluctuations is indeterminate. In the present study, however, accumu-
lations of precipitation and run-off were stored at hourly intervals, making it possible
to estimate the total variance o2 (i,j,s") for different storage intervals s’ 2 1. Analo-

gous to the treatment of the other model fields, the sensitivity of the variance of the
accumulated variables to storage interval s’ was measured by the statistic

FT (i>j9 S,) = G%(i’j’ S’) /6% (i9j5 1)

Global averages F (s’) are shown for accumulated convective precipitation and
surface soil run-off in Figure 9. At all storage intervals the variance 042 (s’) of both
variables is underestimated (Fy < 1) relative to G¢? (1) and estimates of second-mo-
ment statistics degrade rapidly with increasing s’. Since a large part of the variance
of accumulated precipitation and run-offis at intradiurnal frequencies (Table 1), such
inaccurate estimation of G12 may be of concern for some climate applications.

h. Maximum acceptable sampling intervals

The substantial cross-variable scatter in the t- and F-statistics of Figures 5-8 is
an indication of the wide range of sensitivity to sampling frequency displayed by dif-
ferent model variables. From knowledge of these sampling effects, a maximum ac-
ceptable sampling interval S can be determined as

S= max s such that tp (s) <b and B* <Fp (s)<B

where b and B are specified error bounds. Here tp and Fp are used as measures of
estimation errors since they are usually the more relevant statistics for climate stud-
ies. Because only the intradiurnal variance of accumulated quantities is impacted by
the storage interval s’, a maximum acceptable accumulation interval §’ is specified as

S’ = max s’ such that C1 <F; (s) < C
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Prescribing b=0.1, B=1.2, and C=1.5 as tolerable error bounds, the corresponding
area-weighted sampling (or accumulation storage) intervals are listed in Table 1. As
is to be expected, the shortest values of S are usually associated with relatively large
values of intradiurnal variability. For many model variables the value also is longer
than S, implying that the area-average e-folding time 7T is generally not a sufficiently
stringent estimate of the sampling interval required for accurate statistics.
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FIG. 9. Area-weighted global Fp-statistic for accumulations of convective precipitation and surface soil

run-off as a function of accumulation storage interval s’. Dashed line indicates optimal value.
i. Bandwidths of model variables

The final statistic considered is the bandwidth, a fundamental measure of the
sampling frequency necessary for capturing essentially all the information in a time

series. If at each grid point (i,j) the time series of hourly samples of a variable V is
decomposed into Fourier harmonics

VG30) = DAL cos (50 + B i) sin (55)

of different frequency f, then the power accumulated up to frequency o is
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o2(i,j) = X {A¢(,)?+Be(1,)) %}
-

and the bandwidth B is that frequency such that a large fraction ¥ of the total power
is captured: '

of (i,) 2 yo (i, )

The corresponding bandwidth sampling interval is

s, = 1/ (2B)

Land- and global-averages sy for Y= 0.95 and y=0.99 are listed in Table 1. It can
be seen is that the maximum acceptable sampling interval S is always greater than
or equal to sgg. This indicates that a certain amount of information, which is unnec-
essary for accurate estimation of the mean or variance of a model variable, is discard-
ed. The discarded information may be relevant for the estimation of other statistical
quantities, however.

4. Summary and conclusions

The ECMWF model variables display a wide range of sensitivity to sampling fre-
quency, as evidenced by several different statistics. There is general qualitative
agreement among these measures: relatively short e-folding times T tend to be asso-
ciated with short acceptable sampling intervals S and bandwidth intervals Sgg OT Sgg,
and with low p values (high intradiurnal variability). However, there may be substan-
tial quantitative differences among these measures. For example, the sampling inter-
val S necessary to yield reasonably accurate climate statistics is sometimes in closer
agreement with e-folding time T than with more fundamental measures sg5/899 of ap-
propriate sampling interval. It therefore does not seem feasible to prescribe general
guidelines for determining acceptable sampling intervals for accurate estimation of
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first- and second-moment statistics from criteria based on bandwidth intervals. How-
ever, storing snapshots of variables at bandwidth intervals sq9 insures that essential-
ly all the information present in the original time series is retained.

With the exception of convective processes, cloud properties, and the vertical mo-
tion field, sampling frequency is not of much concern for the ECMWF atmospheric
variables because their intradiurnal variability is modest. For example, once-per-day
sampling is sufficient to obtain reasonably accurate statistics of atmospheric specific
humidity, temperature, and wind (although 18-hour rather than 24-hour sampling in-
tervals are recommended to avoid aliasing of the diurnal cycle--cf. Thuburn 1991). In-
frequent sampling is even more appropriate for sub-surface soil temperature and
moisture. Sampling is more problematical, however, for many of the surface fields be-
cause of their shorter time scales and larger intradiurnal variability. For these fields
aliasing of the semi-diurnal cycle and higher-frequency harmonics must be taken into
account, and thus the ability to obtain more accurate statistics by sampling at the
NID frequencies is an attractive, albeit logistically less convenient, contingency.

However, the wide range of sensitivity of the ECMWEF model variables to sam-
pling frequency makes it impractical to recommend an all-purpose storage strategy.
First, for example, a choice must be made between storing most variables as accumu-
lations or as snapshots. Although accumulation allows “exact” calculation of model
statistics, this is only practical if all quantities of interest can be identified a priori
and computed efficiently during the simulation. On the other hand, retaining snap-
shots of model fields permits a posteriori calculation of the time series of additional
derived variables. Thus, saving snapshots of key model fields along with accumula-
tions of selected variables is likely to be the preferred storage strategy for many cli-
mate applications.

If snapshots are stored at six-hour intervals, the climate statistics of the majority
of ECMWF model variables can be estimated with reasonable accuracy and the semi-
diurnal cycle also can be resolved. Moreover, observational data for model validation
usually are not available at more frequent intervals. Nevertheless, a six-hour storage
interval does not permit accurate estimation of the first- and second-moment statis-
tics of surface heat fluxes and atmospheric convective processes, nor does it adequate-
ly capture the high-frequency variability of accumulated precipitation and run-off.

Alternative strategies to six-hourly storage therefore are worth considering. Ide-
ally, it would be desirable to save snapshots (and accumulations of variables such as
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precipitation and runoff) at three-hour intervals since this would allow sufficient
sampling of the most rapidly fluctuating model variables and consistent calculation
of derived quantities such as fluxes of momentum, moisture, and heat. If such a stor-
age scheme is impractical, a reasonable compromise would be to save snapshots of
only the most rapidly varying fields at three- hour intervals or to save their accumu-
lations every six hours. Where accurate estimation of the first-moment statistics of
the surface variables is important for particular applications, storage at NID inter-
vals may be recommended, but such a scheme should be adopted only after insuring
the absence of systematic biases in the second-moment statistics. Finally, if storage
constraints are so severe that a long model history can be saved only twice a day, it is
better to store variables at 11-hour rather than 12-hour intervals in order to avoid er-
rors associated with the aliasing of the semi-diurnal cycle.

We caution that some results of this study may be model-specific, in that the
characteristic time scales of simulated climate processes probably are influenced by
the particular choices of physical/dynamical parameterizations. These results may
also depend on horizontal and vertical resolution, the frequency of model physics cal-
culations, and the perpetual July simulation. Our analysis, therefore, should be
viewed as provisional information on the sampling problem, and we encourage simi-
lar investigations of other general circulation models.
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